Stable Closure of the Cytoplasmic Half-Channel Is Required for Efficient Proton Transport at Physiological Membrane Potentials in the Bacteriorhodopsin Catalytic Cycle

نویسندگان

  • Ting Wang
  • Christoph Oppawsky
  • Yong Duan
  • Jörg Tittor
  • Dieter Oesterhelt
  • Marc T. Facciotti
چکیده

The bacteriorhodopsin (BR) Asp96Gly/Phe171Cys/Phe219Leu triple mutant has been shown to translocate protons 66% as efficiently as the wild-type protein. Light-dependent ATP synthesis in haloarchaeal cells expressing the triple mutant is 85% that of the wild-type BR expressing cells. Therefore, the functional activity of BR seems to be largely preserved in the triple mutant despite the observations that its ground-state structure resembles that of the wild-type M state (i.e., the so-called cytoplasmically open state) and that the mutant shows no significant structural changes during its photocycle, in sharp contrast to what occurs in the wild-type protein in which a large structural opening and closing occurs on the cytoplasmic side. To resolve the contradiction between the apparent functional robustness of the triple mutant and the presumed importance of the opening and closing that occurs in the wild-type protein, we conducted additional experiments to compare the behavior of wild-type and mutant proteins under different operational loads. Specifically, we characterized the ability of the two proteins to generate light-driven proton currents against a range of membrane potentials. The wild-type protein showed maximal conductance between -150 and -50 mV, whereas the mutant showed maximal conductance at membrane potentials >+50 mV. Molecular dynamics (MD) simulations of the triple mutant were also conducted to characterize structural changes in the protein and in solvent accessibility that might help to functionally contextualize the current-voltage data. These simulations revealed that the cytoplasmic half-channel of the triple mutant is constitutively open and dynamically exchanges water with the bulk. Collectively, the data and simulations help to explain why this mutant BR does not mediate photosynthetic growth of haloarchaeal cells, and they suggest that the structural closing observed in the wild-type protein likely plays a key role in minimizing substrate back flow in the face of electrochemical driving forces present at physiological membrane potentials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Curved-Shape Channel Effect on Performance and Distribution of Species in a Proton-Exchange Membrane Fuel Cell: Novel Structure

In this paper, a three-dimensional, single-phase proton-exchange membrane fuel cell (PEMFC) is studied numerically. Finite volume method was used for solving the governing equations and, consequently, the numerical results were validated by comparing them with experimental data, which showed good agreement. The main objective of this work is to investigate the effect of a novel gas channel shap...

متن کامل

Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport.

Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 1...

متن کامل

Intramolecular proton transfer in channelrhodopsins.

Channelrhodopsins serve as photoreceptors that control the motility behavior of green flagellate algae and act as light-gated ion channels when heterologously expressed in animal cells. Here, we report direct measurements of proton transfer from the retinylidene Schiff base in several channelrhodopsin variants expressed in HEK293 cells. A fast outward-directed current precedes the passive chann...

متن کامل

An analytic model of membrane humidifier for proton exchange membrane fuel cell

An essential requirement for an operating PEM fuel cell is providing proper water content in the membrane. To avoid water flooding an appropriate water balance is required. Here, an analytic model of a planar membrane humidifier for PEM fuel cell is proposed where the effect of dimensional parameters includes membrane thickness, membrane area and channel hydraulic diameter are investigated. A N...

متن کامل

Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin.

Structural changes are central to the mechanism of light-driven proton transport by bacteriorhodopsin, a seven-helix membrane protein. The main intermediate formed upon light absorption is M, which occurs between the proton release and uptake steps of the photocycle. To investigate the structure of the M intermediate, we have carried out electron diffraction studies with two-dimensional crystal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014